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Abstract
Self-assembly has for the large part focused on the assembly of molecules without guidance or
management from an outside source. However, self-assembly is in principle by no means
limited to molecules or the nanoscale. A particularly interesting method to the self-assembly of
micro- to millimetre sized components is the use of the ‘magnetic hole’ effect. In this method,
nonmagnetic particles can be manipulated by external magnetic fields by immersing them in a
dispersion of colloidal, magnetic nanoparticles, denoted ferrofluids. Nonmagnetic particles in
magnetized ferrofluids are in many ways ideal model systems to test various forms of particle
self-assembly and dynamics. When microspheres are confined to a monolayer between two
parallel plates and subjected to static or oscillating magnetic fields they show a variety of
dynamical behaviours and assemblages, depending on the frequency and direction of the
external fields. A single pair of magnetic holes oscillating in a ferrofluid layer may be used to
measure the viscosity of tiny volumes of the fluid. We have also observed ordering of dilute
dispersions of macromolecules and nanoparticles in magnetized ferrofluids. The self-assembly
at this length scale results from structural correlations between these nanostructures and
ferrofluid particles rather than from the macroscopic magnetostatic effect for the
magnetic holes.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Monodisperse polystyrene spheres [1] dispersed in ferrofluid3

provide a convenient model system for the study of various
order–disorder phenomena. The basis for this is that the
spheres displace the ferrofluid and behave as magnetic holes
with effective moments equal to the total moment of the
displaced fluid [2]. The spheres are much larger (1–100 μm)
than the magnetic particles (typically 10 nm) in the ferrofluid.
The spheres therefore move around in an approximately
homogeneous magnetic background. For microspheres of
diameter >10 μm the thermal motion is negligible and the only
forces which have to be taken into consideration are the viscous
and magnetic forces.

By confining the spheres and ferrofluid between closely
spaced microscope slides, an essentially two-dimensional
many-body system of interacting particles is obtained. This
offers the possibility of observing, directly through a
microscope, a wide range of nonlinear dynamic phenomena
and collective processes, as magnetic holes are easy to produce
and to manipulate with external magnetic fields. A simplifying

3 Ferrotec GmbH, Hohes Gestade 14, 72622 Nürtingen, Germany.

feature of magnetic holes is that their magnetic moments are
collinear with an external field at any field strength. This is
in contrast with magnetic particles dispersed in nonmagnetic
fluids where random orientation of the magnetic moments
complicates the theoretical treatment of the dynamic and static
properties of the system.

2. Interactions of magnetic holes

The basic principle for magnetic holes is shown in figure 1.
It is in some sense a magnetic analogue of Archimedes’
principle. When a nonmagnetic, spherical particle is dispersed
in a magnetized ferrofluid with a magnetic field H > 0, the
void produced by the particle possesses an effective magnetic
moment MV equal in size, but opposite in direction, to the
magnetic moment of the displaced fluid

MV = V χeff H, with χeff = 3χ/(3 + 2χ), (1)

where V is the volume of the sphere, χeff is the effective
susceptibility, and χ is the volume susceptibility of the
ferrofluid. The interaction energy between two spheres with
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Figure 1. The principle of a magnetic hole in a ferrofluid; (a) two holes side by side will repel each other and (b) two holes with their centres
collinear with the field lines will attract each other. (c) The experimental setup with coil pairs along the x-, y-, and z-directions.

(a) (b)

Figure 2. (a) Pair of nonmagnetic spheres in a ferrofluid layer, viewed along the confinement plates, and the series of dipole images
accounting for the boundary conditions of the magnetic field along the plates. (b) The pair potential u versus dimensionless particle separation
y = x/h, equation (4), for some values of the field component ratio β.

a centre-to-centre separation r is given approximately by the
dipolar interaction [2]

U ∝ M2
V (1 − 3 cos2 θ)

r 3
. (2)

Here, θ is the angle between the line connecting the centres of
the spheres and the direction of the field.

The susceptibility contrast between the ferrofluid and the
two plane nonmagnetic confining plates leads to a deviation
from the purely dipolar interaction of equation (2). According
to the image method, the boundary conditions for the magnetic
field along the plates are fulfilled with the addition of an infinite
series of dipole images σi to the expression for the interaction
in an unbounded medium. The images are constructed as
mirror images in the plane boundaries of the initial dipoles
σ0 = MV or of some previous image, multiplying the
magnitude of the dipole at each mirror symmetry operation by
an attenuation factor κ = χ/(χ+2) as shown in figure 2(a) [3].

The instantaneous interaction potential between a pair
of confined holes can then, similarly to equation (2), be

expressed as

U = μ

8π

∑

i �= j

[−→σ i · −→σ j

r 3
i j

− 3

(−→σ i · −→r i j
) (−→σ j · −→r i j

)

r 5
i j

]
, (3)

where μ = μ0(1 + χ) is the ferrofluid’s permeability and
μ0 = 4π × 10−7 H m−1. The i -index runs over both the
source and image dipoles and the j -index runs only over
the two source dipoles. A detailed analysis of the equation
above shows that the dominant effect for the force components
normal to the plates is the interaction between a particle and
its own mirror image, which stabilizes the particles midway
between the plates.

Decomposing the instantaneous field in its in-plane H⊥
and normal H‖ components, we denote the ratio of their
magnitudes as β = H⊥/H‖, the sphere diameter a, plate
separation h, and the scaled horizontal separation as y = x/h.
Using a magnetic field that is rotating in the x–y plane with a
frequency f = 10–100 Hz (which exceeds the inverse viscous
relaxation time fc = μχ2

eff H
2
‖ /(1152πη)), the relative motion
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Figure 3. Typical static structures of magnetic holes formed for Hx = 800 A m−1. (a) β = 0.3, ε = 0, (b) β = 1.5, ε = 0.44, and
(c) β = 1.5, ε = 0.87.

of the holes can be neglected during one rotation of the field,
and an effective, time-averaged interaction potential can be
obtained by averaging over a full rotation of the magnetic field.
This leads to the following dimensionless form of the time-
averaged, effective interaction potential U( x

h ) [3]

u(y) ≡ 144h3U(y)

μπa6χ2
eff H

2
‖

=
+∞∑

l=−∞
κ |l|

[
1 + (−1)|l|β2

(y2 + l2)3/2
− 3

(−1)|l|l2β2 + y2/2

(y2 + l2)5/2

]
. (4)

The term l = 0 corresponds to the source–source interaction
term, the others to interactions between a particle and the
images of the other ones.

For the micrometre sized spheres used here, the Reynolds
number is very low and inertial terms can then be neglected,
and the magnetic forces are balanced by the viscous Stokes
force given by

Fvisc = 3πηaav, (5)

where ηa is an apparent fluid viscosity (equal to the bulk
viscosity in an unbounded medium) and v is the velocity of the
sphere. Thus, the static structures as well as the dynamics of
microsphere motion can be calculated, and these calculations
are in good quantitative agreement with experiments [3, 4].

3. Experiments on microspheres

By adjusting the ratio β = H⊥/H‖, it is possible to tune
the pair interaction potential from purely repulsive for small
values of β , via metastable and stable fixed particle separations
with x > a for intermediate β-values, to a purely repulsive
potential for large β . This is illustrated in figures 3(a), (b)
and gives rise to triangular lattices with a tunable particle
separation. However, it is also possible to introduce asymmetry

in the rotating in-plane component H‖ =
√

H 2
x + H 2

y with

ε = Hy/Hx < 1, thus having an elliptically polarized field.
Such fields give rise to triangular or rectangular lattices with
two separate continuously tunable lattice parameters as shown
in figure 3(c).

By using smaller spheres, typically a � 2 μm, it is
possible to reduce the particle interactions to a magnitude
comparable to thermal forces and energies, and Brownian

motions of the microspheres become visible. Then the
controlling parameter for the stability of the structure
formation is the ratio of the dipolar energy to the thermal
energy 
 = M2

V /(d3kBT ), where d is the typical centre-to-
centre separation of the spheres, kB is Boltzmann’s constant
and T is the temperature. Values of 
 from about 8 up to
several thousand can be reached.

As we were using a rotating magnetic field perpendicular
to the x–y sample plane, i.e. (Hx , Hz), and only two nearby
spheres of typical size a = 50 μm in the sample cell, it was
possible to set the spheres in stable oscillations with no direct
contact between their surfaces [5]. The magnitude of the field
was about 2 kA m−1, rotation frequency 0.05 Hz, and the plate
separation was h = 2a. This oscillating motion was stable for
more than half an hour. This setup can be used to measure the
viscosity of the fluid because both magnetic and viscous forces
can be calculated.

Since the plate separation in this experiment is comparable
to the sphere diameter, there is an increased viscous drag on the
spheres induced by the walls, and the viscosity ηa seems to be
higher than the bulk viscosity η0 [7].

ηa

η0
= 2

(
1 − 9

16

(
a

h

)
+ 1

8

(
a

h

)3

− 45

256

(
a

h

)4

− 1

16

(
a

h

)5)−1

− 1. (6)

In a similar way, the second sphere will give rise to an
increased drag on the first sphere. This effect has been
calculated [6] and for equal spheres that are not very close, the
increase in the viscosity, as manifested by an apparent viscosity
ηa, is given by

ηa

η0
=

(
1 − 3

4

(a

x

)
+ 1

8

(a

x

)3 − 15

64

(a

x

)4
)−1

. (7)

The correction factors of equations (6) and (7) are plotted in
figure 4(a) and are important even for plate separation h/a and
sphere separation x/a as large as 6.

When the two spheres are close, they may partly
screen the external applied magnetic field for each other.
In order to be sure that the sphere separation in these
experiments was sufficient such that the effective susceptibility
is well approximated by the expression given in equation (1),
we performed a numerical calculation of the effective

3
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(a) (b)

Figure 4. (a) Viscosity correction factor ηa/η0 for two spheres at a separation x/a (a = sphere diameter) moving toward each other
(solid line) and for a sphere moving in the centre between two plates with separation h/a. (b) The effective susceptibility of a sphere relative
to the first order approximation χeff = 3χ/(3 + 2χ) for two spheres in a parallel field separated by centre-to-centre distance x/a.

(a) (b)

Figure 5. (a) Separation distance of two magnetic holes versus time for a setup with the magnetic field rotating at f = 0.05 Hz in the x–z
plane. (b) Apparent viscosity and bulk viscosity for a commercial ferrofluid versus separation of the spheres. The solid line is a guide to the
eye and the dashed line shows the mean value for x/a > 2.

susceptibility χeff as a function of the sphere centre-to-centre
separation x for the parallel field configuration shown in
figure 1(b). The calculation was done using commercial, finite-
element-method software [8], solving the partial differential
equations with the proper boundary conditions. Figure 4(b)
shows the ratio of the effective susceptibility χeff to that of
the magnetic holes model given in equation (1). For sphere
separations larger than about x/a > 2 the deviation is less
than 2% and thus negligible compared to other effects.

By taking proper account of both the viscous correction
effects described above, we have successfully managed to
measure the bulk viscosity [5] of a commercial ferrofluid4.
This is illustrated in figure 5(a) which shows the separation
of the spheres (circles—in units of plate separation h = 2a)
and a fitted sinusoidal curve (solid line). Figure 5(b) shows
the apparent viscosity (upper curve) and the bulk viscosity

4 EMG905 from Ferrotec GmbH, with susceptibility χ = 1.9.

found after correcting for the drag effects in equations (6)
and (7). The value we found was consistent with that provided
by the producer which was given for a temperature different
from that used in our experiment. The great advantage of this
method compared to conventional rheometry methods is the
tiny volume of fluid that is needed, typically less than 1 μl.

4. Self-assembly in binary mixtures of nanoparticles

When the nonmagnetic particle is reduced from micrometre
size to nanometre size and its volume becomes comparable to
the mean volume occupied by a ferrofluid particle, the concept
of an effective magnetic moment for the nonmagnetic species
is no longer valid. The first attempts to look for orientation of
nanosized biological assemblies in ferrofluids took place at the
Institute Laue Langevin (ILL) [9] and somewhat surprisingly,
rather strong anisotropic scattering was observed. In these first
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Figure 6. Blank-subtracted SANS scattering intensity patterns from a dispersion of λ-phage in a ferrofluid for (a) H = 0 and
(b) H = 240 kA m−1.

studies λ-phage was used. This is a virus with a spherical
head of diameter approximately 50 nm and with a cylindrical
tail of length approximately 150 nm. Figure 6 shows small-
angle neutron scattering (SANS) data from a dispersion of
λ-phage in a ferrofluid with a saturation magnetization of
0.037 T exposed to a magnetic field of 240 kA m−1. There
is clearly a pronounced anisotropy due to the alignment of the
λ-phage for the blank-subtracted scattered intensity patterns of
the dispersion before and after exposure to the magnetic field.

Following these initial studies, some SANS experi-
ments [10] were made on tobacco mosaic virus (TMV), which
is a hollow cylindrical assembly of length 300 nm, external di-
ameter 18 nm, and internal diameter 4 nm. Again, a distinct
alignment of the TMV in the ferrofluid was observed.

To explain this unexpected behaviour, it is necessary to
understand the correlations which may develop in a mixed
fluid in which two species of particles coexist. An expression
for the scattering from a binary fluid of nonmagnetic spheres
has been given by Ashcroft and Langreth [11]. The extension
to neutron scattering by a mixture containing a magnetic
species is provided by the analysis of Moon et al [12]. The
scattering of a mixture of nonmagnetic particles and magnetic
particles subjected to a magnetic field can thus be modelled
to involve three correlation terms: between the magnetic and
nonmagnetic particles; between the nonmagnetic particles;
and between the magnetic particles. The results show that,
for typical densities and dipole strengths, the pair probability
distributions of each individual type of particle are relatively
unperturbed by the presence of the other species. This
means that the ferrofluid particles form chains, much as if
the nonmagnetic particles are not present, while the latter find
sufficient room between the chains to act as if the ferrofluid is
not present. Due to this type of coexistence, very strong cross-
correlations between different types of particles can develop
in the system. This means that a ferrofluid particle can
expect to have another ferrofluid particle as a neighbour in the
direction of the field, but most likely a nonmagnetic particle as
a neighbour perpendicular to the field, because that is where it
has to fit into the dispersion. A series of experiments provided
quantitative proof that it is these cross-correlations which
determine the anisotropy of the scattering. This was achieved

using latex spheres dispersed in ferrofluid, and having contrast
variation by selective protonation/deuteration of surfactants
and solvents to isolate different terms in the scattering. To our
knowledge, it has not been possible to extend the theory for
spherical particles outlined here to mixtures of non-spherical
particles. However, it is likely that these cross-correlations
are also important in achieving structural order in dilute
suspensions of mixed magnetic and nonmagnetic colloidal
particles of any shape, as demonstrated by the λ-phage and
TMV experiments discussed above.

The method outlined here may thus be used to
align anisotropic macromolecules and a variety of colloidal
nanoparticles in suspension for diffraction measurements. The
ability to work with low concentrations makes the method
of particular interest for aligning biological materials, such
as chromatin, which are not easily obtainable in quantity,
and biopolymers, which are not amenable to conventional
high-field or shear alignment. Application of this method to
scattering experiments eliminates partially the loss of structural
information usually inherent in orientational averaging of the
molecular form factor. It may also have interesting possibilities
for nanoengineering in general, especially when combined
with field gradient techniques.

5. Conclusions

In this paper we have shown that the magnetic hole effect
can be used to manipulate and induce self-assembly of
nonmagnetic microparticles by external magnetic fields. Static
structures as well as the dynamics of particle motion are
influenced by the boundaries, the degree of confinement,
and the direction of the magnetic field. For suspended
nanoparticles in ferrofluid, the reason for the alignment effects
changes and is more difficult to calculate quantitatively.
However, this method may be useful for aligning nanoparticles
and biomolecules for further diffraction studies.
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